ted interatomic distances are shown in Table 4. The pentagonal bipyramid is quite regular: the $\mathrm{O}-\mathrm{O}$ distances corresponding to the edges shared with the octahedra vary from 2.420 (8) to 2.467 (8) \AA and the remaining distances from 2.80 (3) to 2.88 (3) \AA. On the other hand, the $M \mathrm{O}_{6}$ octahedra are highly distorted with $\mathrm{O}-\mathrm{O}$ distances between 2.420 (8) and 3.129 (8) \AA. The average $M-O$ distances of the three octahedrally coordinated cations are 1.957 (5), 1.969 (6) and 1.950 (5) \AA, while that for the seven-coordinated cation is 2.041 (7) \AA. These values agree closely with those found for $\mathrm{Nb}_{2} \mathrm{WO}_{8}$ (Lundberg, 1972).

The symmetry of the structural units and the mechanism by which they are connected to form the structure are in general different from compound to compound. In $\mathrm{Ta}_{2} \mathrm{WO}_{8}$ and $\mathrm{Nb}_{2} \mathrm{WO}_{8}$ they are linked by corner sharing and form layers like that shown in Fig. 1. In the third direction the layers are stacked on

Fig. 2. Basic unit in the structure of $\mathrm{Ta}_{2} \mathrm{WO}_{8}$. A mirror perpendicular to the plane of the figure passes through the atoms $O(1)$, $M(1), \mathrm{O}(4), M(4)$, and $\mathrm{O}(10)$.
top of one another and each polyhedron shares a vertex with the corresponding one of the next layer. The array of corner-sharing octahedra creates large tunnels extending in the direction of the $\mathbf{a}(\mathrm{Pbcm})$ axis. The tunnels are surrounded by three- or four-octahedron rings. Probably these are the sites in which the Li ions are located in the structures of $\mathrm{LiNb}_{6} \mathrm{O}_{15} \mathrm{~F}$ and the high-temperature form of $\mathrm{LiTa}_{3} \mathrm{O}_{8}$ (Santoro, Roth \& Minor, 1976).

References

Bacon, G. E. (1972). Acta Cryst. A28, 357-358.
Caglioti, G., Paoletti, A. \& Ricci, F. P. (1958). Nucl. Instrum. 3, 223-228.
Caglioti, G. \& Ricci, F. P. (1962). Nucl. Instrum. Methods, 15, 155-163.
Cheetham, A. K. \& Taylor, J. C. (1977). J. Solid State Chem. 21, 253-275.
Greaves, C., Jacobsen, A. J., Tofield, B. C. \& Fender, B. E. F. (1975). Acta Cryst. B31, 641-646.

Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Holcombe, C. E. (1976). Report Y-2061. Oak Ridge National Laboratory, Tennessee.
Holcombe, C. E. \& Smith, D. D. (1978). J. Am. Ceram. Soc. 61, 163-169.
International Tables for X-ray Crystallography (1969). Vol. I, 3rd ed., pp. 49-50. Birmingham: Kynoch Press.
Lundberg, M. (1965). Acta Chem. Scand. 19, 2274-2284.
Lundberg, M. (1972). Acta Chem. Scand. 26, 2932-2940.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Roth, R. S. \& Waring, J. L. (1966). J. Res. Natl Bur. Stand. Sect. A, 70, 281-303.
Roth, R. S., Waring, J. L. \& Parker, H. S. (1970). J. Solid State Chem. 2, 445-461.
Santoro, A., Roth, R. S. \& Minor, D. (1976). Proc. 3rd Eur. Crystallogr. Meet. Zurich, Switzerland, p. 105.
Santoro, A., Roth, R. S. \& Minor, D. (1978). Acta Cryst. A34, S159.
Stephenson, N. C. (1968). Acta Cryst. B24, 637-653.

Acta Cryst. (1979). B35, 1205-1207

Dodecacarbonyltetrakis $-\mu_{3}$-[(pentacarbonylrhenio)indio $]$-tetrahedro-tetrarhenium, $\operatorname{Re}_{\mathbf{4}}(\mathbf{C O})_{12}\left\{\mu_{3}-\operatorname{InRe}(\mathbf{C O})_{5}\right\}_{4}$

By Hans Preut and Hans-JÜrgen Haupt
Lehrstuhl für Anorganische Chemie II der Universität, D-4600 Dortmund 50, Federal Republic of Germany

(Received 7 November 1978; accepted 2 February 1979)

Abstract

In}_{4} \mathrm{Re}_{8}(\mathrm{CO})_{32}, M_{r}=2845 \cdot 22\), tetragonal, $a=15.042$ (2), $b=15.040$ (2), $c=12.075$ (2) \AA, $U=2731.7 \AA^{3} ; Z=2, D_{r}=3.457 \mathrm{Mg} \mathrm{m}^{-3} ; F(000)=$ 2488; Mo $K \alpha$ radiation, $\lambda=0.71069 \AA, \mu($ Mo $K \alpha)=$ $18.537 \mathrm{~mm}^{-1}$. Space group $P \overline{4} 2{ }_{1} c$. The structure was solved by the heavy-atom method with 1586 unique

reflexions ($I>3 \sigma$) and refined to a final R of 0.0435 . The core of the molecule is formed by eight Re atoms and four In atoms which are bonded to each other by a total of $16 \mathrm{In}-\mathrm{Re}$ bonds $[r(\mathrm{In}-\mathrm{Re}): 2.796$ (2), 2.820 (2), 2.848 (2); 2.720 (2) \AA] and four $\mathrm{Re}-\operatorname{Re}$ bonds $[r(\mathrm{Re}-\mathrm{Re}): 2.997(1), 3.034(1) \AA]$. Four Re (c) 1979 International Union of Crystallography
atoms form an inner Re tetrahedron; above each of its four planes there is one In atom bound to three Re atoms of the inner tetrahedron and to an Re atom of an outer Re tetrahedron.

Introduction. The heteronuclear metal atom cluster $\operatorname{Re}_{4}(\mathrm{CO})_{12}\left\{\mu_{3}-\operatorname{InRe}(\mathrm{CO})_{5}\right\}_{4}$ was obtained by a reaction of In metal with $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ (Haupt, Neumann \& Preut, 1975).

Data were collected with a crystal of dimensions $0.12 \times 0.15 \times 0.24 \mathrm{~mm}$. Unit-cell parameters were determined by least-squares fits to the reflecting positions of 23 reflexions with a Hilger \& Watts Y 290 automatic four-circle diffractometer with graphitemonochromatized Mo Ka radiation and a scintillation counter. The intensities of 2907 reflexions ($I>3 \sigma$) with $2^{\circ} \leq \theta \leq 26.3^{\circ}$ were measured by the $\omega / 2 \theta$ scan technique, with a scan width $\Delta 2 \theta=(1.34+0.34 \tan \theta)^{\circ}$ from background to background and a scan speed of $0.02^{\circ} \mathrm{s}^{-1}$ in 2θ. Backgrounds were measured at either end of the scan range for 7 s . Five standard reflexions were measured every 60 reflexions and showed only random deviations from their mean intensities. Lorentz and polarization corrections were applied (no corrections for absorption) and after averaging of the equivalent reflexions, the data set contained 1586 independent reflexions. The structure was solved by Patterson and Fourier methods. The positions of the atoms Re and In were found from the Patterson synthesis. Full-matrix least-squares refinement with anisotropic thermal parameters yielded a conventional $R\left(=\sum \Delta / \sum F_{o}\right.$, where $\left.\Delta=\left|F_{o}-\left|F_{c}\right|\right|\right)$ of 0.074 . At this stage a Fourier synthesis furnished positions for the C and O atoms. Further cycles of refinement (full-matrix) with anisotropic thermal parameters for In and Re and isotropic

Table 1. Final atomic positional parameters $\left(\times 10^{4}\right)$ with estimated standard deviations in parentheses

	x	y	z
$\ln (1)$	$1555(1)$	$-185(1)$	$-1304(2)$
$\operatorname{Re}(1)$	$988(1)$	$-129(1)$	$899(1)$
$\operatorname{Re}(2)$	$2982(1)$	$-436(1)$	$-2652(1)$
$\mathrm{C}(11)$	$3932(22)$	$-710(26)$	$-3737(29)$
$\mathrm{O}(11)$	$4523(18)$	$-873(18)$	$-4330(23)$
$\mathrm{C}(12)$	$2517(25)$	$529(22)$	$-3558(31)$
$\mathrm{O}(12)$	$2302(27)$	$1122(24)$	$-4135(34)$
$\mathrm{C}(13)$	$3694(23)$	$398(22)$	$-1785(29)$
$\mathrm{O}(3)$	$4094(20)$	$917(20)$	$-1246(27)$
$\mathrm{C}(14)$	$3401(21)$	$-1406(19)$	$-1733(25)$
$\mathrm{O}(14)$	$3598(21)$	$-1957(19)$	$-1151(26)$
$\mathrm{C}(15)$	$2143(20)$	$-1251(20)$	$-3376(27)$
$\mathrm{O}(15)$	$1657(19)$	$-1732(18)$	$-3766(24)$
$\mathrm{C}(16)$	$1768(19)$	$-1131(18)$	$871(33)$
$\mathrm{O}(16)$	$2239(19)$	$-1735(18)$	$950(25)$
$\mathrm{C}(17)$	$2003(19)$	$658(21)$	$991(32)$
$\mathrm{O}(17)$	$2626(16)$	$1082(16)$	$1124(23)$
$\mathrm{C}(18)$	$954(20)$	$-171(20)$	$2479(20)$
$\mathrm{O}(18)$	$1037(16)$	$-208(15)$	$3431(19)$

thermal parameters for C and O led to a conventional R of 0.0435 .* During the final stages of refinement, each reflexion was assigned a weight according to $w^{-1}=$ $\sigma^{2}(F)+0.005 F^{2}$. The structure solution and refinement were carried out with the SHELX program system (Sheldrick, 1976). In addition ORTEP (Johnson, 1965) was used. Atomic scattering factors were taken from Cromer \& Mann (1968) and Cromer \& Liberman (1970). Positional parameters are shown in Table 1 and interatomic distances and angles in Table 2.

Discussion. The tetragonal unit cell contains two molecules, each having a fourfold inversion axis. Fig. 1 shows the structure of such a molecule with the numbering scheme of the atoms. The first digit indicates the symmetry operation ($1: x y z, 2: \bar{x} \bar{y} z, 3: \bar{y} x \bar{z}, 4: y \bar{x} \bar{z}$),

[^0]Table 2. Interatomic distances (\AA) and selected interatomic angles $\left({ }^{\circ}\right)$ in $\mathrm{Re}_{4}(\mathrm{CO})_{12}\left\{\mu_{3}-\operatorname{InRe}(\mathrm{CO})_{5}\right\}_{4}$

$\operatorname{In}(11)-\operatorname{Re}(11)$	$2.796(2)$	$\operatorname{Re}(11)-\mathrm{C}(16)$	$1.91(3)$
$\operatorname{In}(11)-\operatorname{Re}(31)$	$2.820(2)$	$\operatorname{Re}(11)-\mathrm{C}(17)$	$1.94(3)$
$\operatorname{In}(11)-\operatorname{Re}(41)$	$2.848(2)$	$\operatorname{Re}(11)-\mathrm{C}(18)$	$1.91(3)$
$\operatorname{In}(11)-\operatorname{Re}(12)$	$2.720(2)$	$\mathrm{C}(11)-\mathrm{O}(11)$	$1.17(4)$
$\operatorname{Re}(11)-\operatorname{Re}(21)$	$2.997(1)$	$\mathrm{C}(12)-\mathrm{O}(12)$	$1.18(5)$
$\operatorname{Re}(11)-\operatorname{Re}(31)$	$3.034(1)$	$\mathrm{C}(13)-\mathrm{O}(13)$	$1.18(5)$
$\operatorname{Re}(12)-\mathrm{C}(11)$	$1.98(3)$	$\mathrm{C}(14)-\mathrm{O}(14)$	$1.13(4)$
$\operatorname{Re}(12)-\mathrm{C}(12)$	$1.95(3)$	$\mathrm{C}(15)-\mathrm{O}(15)$	$1.13(4)$
$\operatorname{Re}(12)-\mathrm{C}(13)$	$1.95(3)$	$\mathrm{C}(16)-\mathrm{O}(16)$	$1.16(4)$
$\operatorname{Re}(12)-\mathrm{C}(14)$	$1.94(3)$	$\mathrm{C}(17)-\mathrm{O}(17)$	$1.14(4)$
$\operatorname{Re}(12)-\mathrm{C}(15)$	$1.97(3)$	$\mathrm{C}(18)-\mathrm{O}(18)$	$1.16(3)$

Bond angles at the atom $\operatorname{Re}(11)$			
$\operatorname{Re}(21)-\operatorname{Re}(11)-\operatorname{Re}(31)$	60.4 (1)	$\mathrm{C}(16)-\operatorname{Re}(11)-\operatorname{Re}(41)$	89.5 (10)
$\operatorname{Re}(21)-\operatorname{Re}(11)-\operatorname{Re}(41)$	60.4 (1)	$\mathrm{C}(17)-\operatorname{Re}(11)-\operatorname{Re}(31)$	92.2 (10)
$\operatorname{Re}(31)-\operatorname{Re}(11)-\operatorname{Re}(41)$	59.2 (1)	$\mathrm{C}(18)-\operatorname{Re}(11)-\operatorname{Re}(21)$	88.7 (8)
$\operatorname{In}(11)-\mathrm{Re}(11)-\operatorname{In}(31)$	108.6 (1)	$\mathrm{C}(16)-\mathrm{Re}(11)-\operatorname{In}(11)$	76.8 (10)
$\operatorname{In}(11)-\operatorname{Re}(11)-\operatorname{In}(41)$	109.5 (1)	$\mathrm{C}(16)-\mathrm{Re}(11)-\operatorname{In}(41)$	77.8 (10)
$\operatorname{In}(31)-\operatorname{Re}(11)-\operatorname{In}(41)$	112.4 (1)	$\mathrm{C}(17)-\operatorname{Re}(11)-\operatorname{In}(11)$	$80 \cdot 3$ (10)
$\operatorname{In}(11)-\operatorname{Re}(11)-\operatorname{Re}(31)$	57.7 (1)	$\mathrm{C}(17)-\operatorname{Re}(11)-\operatorname{In}(31)$	77.3 (10)
$\operatorname{In}(11)-\operatorname{Re}(11)-\operatorname{Re}(41)$	58.3 (1)	$\mathrm{C}(18)-\mathrm{Re}(11)-\mathrm{In}(31)$	81.2 (8)
$\operatorname{In}(11)-\operatorname{Re}(11)-\operatorname{Re}(21)$	107.9 (1)	$\mathrm{C}(18)-\operatorname{Re}(11)-\operatorname{In}(41)$	77.6 (8)
$\operatorname{In}(31)-\operatorname{Re}(11)-\operatorname{Re}(21)$	57.6 (1)	$\mathrm{C}(16)-\operatorname{Re}(11)-\mathrm{C}(17)$	89.9 (14)
		$\mathrm{C}(16)-\operatorname{Re}(11)-\mathrm{C}(18)$	$90 \cdot 5$ (13)
		$\mathrm{C}(17)-\operatorname{Re}(11)-\mathrm{C}(18)$	89.1 (13)
Bond angles at the atom $\operatorname{In}(11)$			
$\mathrm{Re}(11)-\operatorname{In}(11)-\operatorname{Re}(31)$	65.4 (1)	$\mathrm{Re}(12)-\mathrm{In}(11)-\operatorname{Re}(11)$	$144 \cdot 5$ (1)
$\operatorname{Re}(11)-\operatorname{In}(11)-\operatorname{Re}(41)$	65.0 (1)	$\operatorname{Re}(12)-\operatorname{In}(11)-\operatorname{Re}(3)$	$142 \cdot 3$ (1)
$\operatorname{Re}(31)-\operatorname{In}(11)-\operatorname{Re}(41)$	63.8 (1)	$\operatorname{Re}(12)-\operatorname{In}(11)-\operatorname{Re}(41)$	138.3 (1)
Bond angles at the atom $\operatorname{Re}(12)$			
$\operatorname{In}(11)-\operatorname{Re}(12)-\mathrm{C}(11)$	173.3 (10)	$\mathrm{C}(14)-\mathrm{Re}(12)-\mathrm{C}(15)$	89.7 (13)
$\operatorname{In}(11)-\operatorname{Re}(12)-\mathrm{C}(12)$	87.1 (11)	$\mathrm{C}(15)-\mathrm{Re}(12)-\mathrm{C}(12)$	89.1 (14)
$\operatorname{In}(11)-\operatorname{Re}(12)-\mathrm{C}(13)$	$91 \cdot 3$ (10)	$\mathrm{C}(12)-\mathrm{Re}(12)-\mathrm{C}(11)$	92.4 (15)
$\operatorname{In}(11)-\operatorname{Re}(12)-\mathrm{C}(14)$	91.0 (9)	$\mathrm{C}(13)-\mathrm{Re}(12)-\mathrm{C}(11)$	95.3 (14)
$\operatorname{In}(11)-\operatorname{Re}(12)-\mathrm{C}(15)$	81.1 (9)	$\mathrm{C}(14)-\operatorname{Re}(12)-\mathrm{C}(11)$	89.3 (14)
$\mathrm{C}(12)-\operatorname{Re}(12)-\mathrm{C}(13)$	91.1 (15)	$\mathrm{C}(15)-\operatorname{Re}(12)-\mathrm{C}(11)$	$92 \cdot 3$ (14)
$\mathrm{C}(13)-\operatorname{Re}(12)-\mathrm{C}(14)$	89.9 (13)		

Fig. 1. Drawing of the molecule $\mathrm{Re}_{4}(\mathrm{CO})_{12}\left\{\mu_{3}-\operatorname{In} \operatorname{Re}(\mathrm{CO})_{5}\right\}_{4}$ with the numbering scheme of the atoms.
while the second digit is a consecutive number for the element concerned. The core of the molecule is formed by a metal cluster, consisting of an inner Re tetrahedron $[\operatorname{Re}(11), \operatorname{Re}(21), \operatorname{Re}(31)$ and $\operatorname{Re}(41)]$ with the two non-equivalent distances $r(\mathrm{Re}-\mathrm{Re})$ of 2.997 (1) and 3.034 (1) \AA. Above each of the four planes of this inner Re tetrahedron there is an In atom that is 2.796 (2), 2.820 (2) and 2.848 (2) \AA distant from the three neighbouring Re atoms of the inner tetrahedron. To each of these four In atoms, which form a nearly ideal tetrahedron, is bound an outer Re atom with a bond distance of $r(\operatorname{In}-\mathrm{Re})=2.720$ (2) \AA. As a result there is a metal cluster, which consists of three dovetailed tetrahedra. A stereoview of the molecule is shown in Fig. 2. The $\overline{4}$ axis runs through the midpoint of the $\operatorname{Re}(11)-\operatorname{Re}(21)$ and the $\operatorname{Re}(31)-\operatorname{Re}(41)$ bonds. The Re atoms of the inner tetrahedron have coordination number nine. To each of these atoms are bonded three Re atoms, three In atoms and three C atoms. The two non-equivalent $\operatorname{Re}-\operatorname{Re}$ bond distances [2.997(1),

Fig. 2. Stereoscopic view of the molecule $\mathrm{Re}_{4}(\mathrm{CO})_{12}\left\{\mu_{3}\right.$-InRe$\left.(\mathrm{CO})_{5}\right\}_{4}$.
3.034 (1) \AA] are significantly shorter than the distance in $\operatorname{Re}_{2}(\mathrm{CO})_{8}\left\{\mu-\operatorname{InRe}(\mathrm{CO})_{s}\right\}_{2}[3.232$ (1) \AA] (Preut \& Haupt, 1975) and the three non-equivalent In-Re bond distances $[2.796(2), 2.848(2), 2.820(2) \AA]$ have greater values than those in the inner metal ring of $\operatorname{Re}_{2}(\mathrm{CO})_{8}\left\{\mu-\operatorname{InRe}(\mathrm{CO})_{s}\right\}_{2}[2.754$ (1), $2 \cdot 807$ (1) $\AA]$.

The three C atoms are bonded to the Re atom in such a way as to be situated in the plane that contains the neighbouring edge of the inner tetrahedron and its centre. To the In atom are bonded four Re atoms with bond distances significantly different from each other. The three bonds to the inner Re tetrahedron however are each distinctly greater than the bond to the fourth outer Re atom.

We thank Professor Friedo Huber and Arnold Hartmann for giving us their support.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Haupt, H.-J., Neumann, F. \& Preut, H. (1975). J. Organomet. Chem. 99, 439-446.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Preut, H. \& Haupt, H.-J. (1975). Chem. Ber. 108, 14471453.

Sheldrick, G. M. (1976). Personal communication.

[^0]: * Lists of structure factors, anisotropic temperature factors for In and Re and isotropic temperature factors for C and O have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34250 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

